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Iwasawa effects in multilayer optics
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There are many two-by-two matrices in layer optics. It is shown that they can be formulated in terms of a
three-parameter group whose algebraic property is the same as the group of Lorentz transformations in a space
with two spacelike and one timelike dimensions, or theSp(2) group which is a standard theoretical tool in
optics. Among the interesting mathematical properties of this group, the Iwasawa decomposition drastically
simplifies the matrix algebra under certain conditions, and leads to a concise expression for theS matrix for
transmitted and reflected waves. It is shown that the Iwasawa effect can be observed in multilayer optics, and
a sample calculation of theS matrix is given.
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I. INTRODUCTION

In a series of recent papers@1,2#, Han, Kim, and Noz have
formulated polarization optics in terms of the two-by-tw
and four-by-four representations of the six-parameter L
entz group. They noted that the Lorentz group properties
be found in optical materials. Indeed, there are many tw
by-two matrices in layer optics@3–5#. In this paper, we re-
organize them within the framework of the Lorentz grou
We then derive a mathematical relation that can be te
experimentally. If a light wave hits a flat surface, a part
this wave becomes reflected and the remaining part beco
transmitted.

If there are multilayers, this process repeats itself at e
boundary. There has been a systematic approach to this p
lem based on the two-by-twoS-matrix formalism@3–5#. This
S matrix consists of boundary and phase-shift matrices.
phase-shift matrices are complex and theS matrix is in gen-
eral complex.

However, in this paper we first show these complex m
trices can be systematically transformed into a set of
unimodular~with determinant5 1! matrices with three inde
pendent parameters. Then we can use the well-establi
mathematical procedure for them. This procedure is ca
theSp(2) group whose algebraic property is the same as
of the SU(1,1) group which occupies a prominent place
optics from squeezed states of light@6#. However, the most
pleasant aspect of theSp(2) group is that its algebras consi
only of two-by-two matrices with real elements. When a
plied to a two-dimensional plane, they produce rotations
squeeze transformations@7#.

It is known that these simple matrices produce some n
trivial mathematical results, namely Wigner rotations a
Iwasawa decompositions@8#. The Wigner rotation means
rotation resulting from a multiplication of three squeeze m
trices, and the Iwasawa decomposition means that a pro
of squeeze and rotation matrices, under certain conditi
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leads to a matrix with one vanishing off-diagonal eleme
This leads to a substantial simplification in mathematics a
eventually leads to a more transparent comparison of the
with experiments. This decomposition has been discusse
the literature in connection with polarization optics@9,10#. In
this paper we study applications of this mathematical dev
in layer optics.

There are papers in the literature on applications of
Lorentz group in layer optics@2,11#, but these papers ar
concerned with polarization optics. In this paper we are de
ing with reflections and transmissions of optical waves.
show that layers with alternate indexes of refraction can
hibit an Iwasawa effect and provide a calculation of t
transmission and reflection coefficients. It is remarkable t
the Lorentz group can play as the fundamental scientific l
guage even in the physics of reflections and transmissio

In Sec. II we formulate the problem in terms of th
S-matrix method widely used in optics@3#. In Sec. III this
S-matrix formalism is translated into the mathematic
framework of theSp(2) group consisting of two-by-two uni
modular matrices with real elements. We demonstrate
there is a subset of these matrices with one vanishing no
agonal element. It is shown possible to produce this se
matrices from multiplications of the matrices in the origin
set. This is called the Iwasawa decomposition. In Sec. IV
transform the mathematical formalism of the Iwasawa
composition into the real world, and calculate the reflect
and transmission coefficients which can be measured in
tics laboratories.

Even though the present paper is based on some gr
theoretical theorems, we used the algebra of two-by-two m
trices throughout the paper while avoiding the formal ma
ematical language. In the Appendix we explain what we
in terms of group theory.

II. FORMULATION OF THE PROBLEM

Let us start with theS-matrix formalism of the layer op-
tics. We start with a plane wave traveling in a given dire
tion. If the wave is incident on a plane boundary of a m
©2001 The American Physical Society02-1
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dium with a different index of refraction, the problem can
formulated in terms of two-by-two matrices@3,5#. If we write
the column vectors

S E1
(1)

E1
(2)D , S E2

(1)

E2
(2)D ~1!

for the incident, with superscript~1!, and reflected, with
superscript~2!, for the waves in the first and second med
respectively, then they are connected by the two-by-twS
matrix,

S E1
(1)

E1
(2)D 5S S11 S12

S21 S22
D S E2

(1)

E2
(2)D . ~2!

Of course the elements of the aboveS matrix depend on
reflection and transmission coefficients@3#.

Let us consider a light-wave incident on a flat surfa
then it is decomposed into transmitted and reflected wave
E1

(1) is the incident wave, the transmitted wave isE2
(1), with

E2
(1)5t12E1

(1) , E1
(2)5r 12E1

(1) . ~3!

Thus, theS matrix takes the form@3#

S E1
(1)

E1
(2)D 5S 1/t12 r 12/t12

r 12/t12 1/t12
D S E2

(1)

0
D . ~4!

If the wave comes from the second medium in the oppo
direction, the same matrix can be used for

S 0

E1
(2)D 5S 1/t12 r 12/t12

r 12/t12 1/t12
D S E2

(1)

E2
(2)D . ~5!

Since the magnitude of the reflection coefficient is sma
than one, and sincet12

2 1r 12
2 51, we can write the above ma

trix as

S coshh sinhh

sinhh coshh D , ~6!

with

r 125tanhh, t1251/coshh. ~7!

Since this describes both the reflection and transmissio
the boundary, we shall call this matrix the ‘‘boundary m
trix’’ @12#. The reflection and transmission coefficients are
course, derivable from Maxwell’s equations with bounda
conditions. The mathematics of this form is well known.
can perform Lorentz boosts when applied to the longitudi
and timelike coordinates. Recently, it has been observed
it performs squeeze transformations when applied to the t
dimensional space ofx andy @7#.

Next, if the wave travels within a given medium from on
inner-surface to the other surface@3#,

S Ea
(1)

Ea
(2)D 5S e2 id 0

0 eidD S Eb
(1)

Eb
(2)D , ~8!
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where the subscriptsa and b are for the initial and final
surfaces, respectively. The above expression tells there
phase difference of 2d between the waves. This phase d
ference depends on the index of refraction, wavelength,
the angle of incidence@3#.

In this paper we consider a multilayer system, consist
of two media with different indexes of refraction as is illu
trated in Fig. 1. Then, the system consists of many bou
aries and phase-shift matrices. After multiplication of
those matrices, the result will be one two-by-two matrix th
we introduced as theSmatrix in Eq.~2!. We are interested in
this paper when this matrix takes special forms that can
readily tested experimentally.

If the wave hits the first medium from the air, as is illu
trated in Fig. 1, we write the matrix as

S coshl sinhl

sinhl coshl
D . ~9!

Within the first medium, the phase-shift matrix becomes

S e2 if 0

0 eifD . ~10!

When the wave hits the surface of the second medium,
corresponding matrix is

S coshh sinhh

sinhh coshh D . ~11!

Within the second medium, we write the phase-shift mat
as

S e2 i j 0

0 ei jD . ~12!

FIG. 1. Multilayer system. A light wave is incident on the fir
boundary, with transmitted and reflected waves. The transmi
wave goes through the first medium and hits the second med
again with reflected and transmitted waves. The transmitted w
goes through the second medium and hits the first medium. T
cycle continuesN times.
2-2
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Then, when the wave hits the first medium from the seco

S coshh 2sinhh

2sinhh coshh D . ~13!

But if the thickness of the first medium is zero, and the wa
exists to the air, then the system goes through the boun
matrix

S coshl 2sinhl

2sinhl coshl
D . ~14!

The net result is

S coshl sinhl

sinhl coshl
D S a b

g d D S coshl 2sinhl

2sinhl coshl
D ,

~15!

with

S a b

g d D 5S e2 if 0

0 eifD S coshh sinhh

sinhh coshh D S e2 i j 0

0 ei jD
3S coshh 2sinhh

2sinhh coshh D . ~16!

If the wave goes throughN cycles of this pair of layers
the S matrix becomes

S coshl sinhl

sinhl coshl
D S a b

g d D NS coshl 2sinhl

2sinhl coshl
D .

~17!

Thus, the problem reduces to looking into unusual proper
of the core matrix

S a b

g d D N

. ~18!

We realize that the numerical computation of this express
is rather trivial these days, but we are still interested in
mathematical form which takes an exceptionally sim
form. It is still an interesting problem to produce mathem
ics that enable us to perform calculations without using co
puters. In Sec. III we shall consider mathematical simpl
cation coming from one vanishing off-diagonal element.

III. MATHEMATICAL INSTRUMENT

The core matrix of Eq.~18! contains the chain of the
matrices

W5S e2 if 0

0 eifD S coshh sinhh

sinhh coshh D S e2 i j 0

0 ei jD . ~19!

The Lorentz group allows us to simplify this expression u
der certain conditions.

For this purpose we transform the above expression in
more convenient form by taking the conjugate of each of
matrices with
02660
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C15
1

A2
S 1 i

i 1D . ~20!

ThenC1WC1
21 leads to

S cosf 2sinf

sinf cosf D S coshh sinhh

sinhh coshh D S cosj 2sinj

sinj cosj
D .

~21!

In this way, we have convertedW of Eq. ~19! into a real
matrix, but it is not simple enough.

Let us take another conjugate with

C25
1

A2
S 1 1

21 1D . ~22!

Then the conjugateC2C1WC1
21C2

21 becomes

S cosf 2sinf

sinf cosf D S eh 0

0 e2hD S cosj 2sinj

sinj cosj
D . ~23!

The combined effect ofC2C1 is

C5C2C15
1

A2
S eip/4 eip/4

2e2 ip/4 e2 ip/4D , ~24!

with

C215
1

A2
S e2 ip/4 2eip/4

e2 ip/4 eip/4 D . ~25!

After multiplication, the matrix of Eq.~23! will take the
form

V5S A B

C DD , ~26!

whereA, B, C, andD are real numbers. IfB andC vanish,
this matrix will becomes diagonal, and the problem will b
come too simple. If, on the other hand, only one of these t
elements become zero, we will achieve a substantial m
ematical simplification and will be encouraged to look f
physical circumstances that will lead to this simplification

Let us summarize. We started in this section with the m
trix representationW given in Eq. ~19!. This form can be
transformed into theV matrix of Eq.~23! through the conju-
gate transformation

V5CWC21, ~27!

whereC is given in Eq.~24!. Conversely, we can recover th
W representation by

W5C21VC. ~28!

For calculational purposes, theV representation is much
easier because we are dealing with real numbers. On
2-3
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other hand, theW representation is of the form for theS
matrix we intend to compute. It is gratifying to see that th
are equivalent.

Let us go back to Eq.~23! and consider the case where t
anglesf andj satisfy the following constraints:

f1j52u, f2j5p/2, ~29!

thus

f5u1p/4, j5u2p/4. ~30!

Then in terms ofu, we can reduce the matrix of Eq.~23! to
the form

S ~coshh!cos~2u! sinhh2~coshh!sin~2u!

sinhh1~coshh!sin~2u! ~coshh!cos~2u!
D .

~31!

Thus the matrix takes a surprisingly simple form if the p
rametersu andh satisfy the constraint

sinhh5~coshh!sin~2u!. ~32!

Then the matrix becomes

S 1 0

2 sinhh 1D . ~33!

This aspect of the Lorentz group is known as the Iwasa
decomposition@8#, and has been discussed in the optics
erature@9,10#.

The matrices of the form is not so strange in optics.
para-axial lens optics, the translation and lens matrices
written as

S 1 u

0 1D and S 1 0

u 1D , ~34!

respectively. These matrices have the following interest
mathematical property@2#:

S 1 u1

0 1 D S 1 u2

0 1 D 5S 1 u11u2

0 1 D ~35!

and

S 1 0

u1 1D S 1 0

u1 1D 5S 1 0

u11u2 1D . ~36!

We note that the multiplication is commutative, and the p
rameter becomes additive. These matrices convert mult
cation into addition, as logarithmic functions do.

Throughout this section we used the algebra of two-
two matrices, while avoiding formal group-theoretical la
guages. In the Appendix, we give a group-theoretical in
pretation of what we are doing in this paper.
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IV. POSSIBLE EXPERIMENTS

The question then is whether it is possible to constr
optical layers that will perform this or similar calculation. I
order to make contacts with the real world, let us extend
algebra to the form

S 1 0

2 sinhh 1D S e2h 0

0 ehD , ~37!

which becomes

S e2h 0

2e2h sinhh ehD . ~38!

The square of this matrix is

S e2h 0

2e2h sinhh ehD 2

5S e22h 0

2~e22h11!sinhh e2hD .

~39!

If we repeat this process,

S e2h 0

2e2h sinhh ehD N

5S eNh 0

2b~sinhh! e2NhD , ~40!

with

b5e2Nh (
k51

N21

e22(k21)h, ~41!

which can be simplified to

b5
e2h sinh~Nh!

sinhh
. ~42!

Then we can write Eq.~40! as

S e2h 0

2e2h sinhh ehD N

5S e2Nh 0

2e2h sinh~Nh! eNhD . ~43!

If we take into account the boundary between the air and
first medium,

S el 0

0 e2lD S e2Nh 0

2e2h sinh~Nh! eNhD S e2l 0

0 elD
5S e2Nh 0

2e2(2l1h) sinh~Nh! eNhD . ~44!

Thus, the original matrix of Eq.~2! becomes
2-4
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S cosh~Nh!1 ie2(h12l)sinh~Nh! 2~11 ie2(h12l)!sinh~Nh!

2~12 ie2(h12l)!sinh~Nh! cosh~Nh!2 ie2(h22l)sinh~Nh!
D . ~45!
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From theS-matrix formalism, the reflection and transmissio
coefficients are

R5
Ea

(2)

Ea
(1)

5
S21

S11
,

T5
Es

(1)

Ea
(1)

5
1

S21
. ~46!

Thus, they become

R5
~12 ie2(h12l)!sinh~Nh!

cosh~Nh!1 ie2(h12l)sinh~Nh!
,

T5
21

~12 ie2(h12l)!sinh~Nh!
. ~47!

The above expression depends only the number of la
cyclesN and the parameterh, which was defined in terms o
the reflection and transmission coefficients in Eq.~7!. It is
important also that the above simple form is possible onl
the phase-shift parametersf and j should satisfy the rela
tions given in Eqs.~30! and ~32!. In summary, they should
satisfy

cos~2j!52cos~2f! and tanhh5cos~2j!. ~48!

In setting up the experiment, we note that all three para
eters h, j, and f depend on the incident angle and t
frequency of the light wave. The parameterh is derivable
from the reflection and transmission coefficients which
pend on both the angle and frequency. The angular par
etersj and f depend on the optical path and the index
refraction which depend on the incident angle and the
quency, respectively.

Now all three quantities in Eq.~48! are functions of the
incident angle and the frequency. If we consider a thr
dimensional space with the incident angle and frequenc
the x and y axes, respectively, all three quantities, cos(2j),
cos(2f), and tanhh, will be represented by two-dimension
surfaces. If we choose cos(2j) and cos(2f), the intersection
will be a line. This line will pass through the third surface f
tanhh. The point at which the line passes through the surf
corresponds to the values of the incident angle and freque
which will satisfy the two conditions given in Eq.~48!.

While it is possible to set up this experiment, it will re
quire computer work to determine a point where the th
planes coincide at one point. It does not take too much
ditional work to compute theS matrix without the Iwasawa
effects if the number of layers is not large. The computer
handle the problem easily ifN is about 10, 100, or even
1000. It would indeed be interesting how this Iwasawa eff
stands out from the computer calculation.
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V. CONCLUDING REMARKS

In this paper we borrowed the concept of Iwasawa
composition from well-known theorems in group theory. O
the other hand, group theory appears in this paper in the f
of two-by-two matrices with three independent paramete
The Iwasawa decomposition makes the algebra of two-
two matrices even simpler. It is interesting to note that th
still is room for mathematical simplifications in the algeb
of two-by-two matrices and that this procedure can be tes
in optics laboratories.

APPENDIX: FURTHER MATHEMATICAL DETAILS

In Sec. III, which contains the mathematical instrume
for this paper, we restricted ourselves to the algebra of tw
by-two matrices and avoided as much as possible gro
theoretical languages. In order to explain where those a
braic tricks came from, we give in this appendix a grou
theoretical interpretation of what we did in this paper.

The groupSL(2,c) consists of two-by-two unimodula
matrices whose elements are complex. There are there
six independent parameters, and thus six generators o
Lie algebra. This group is locally isomorphic to the si
parameter Lorentz group orO(3,1) applicable to the
Minkowskian space of three spacelike directions and o
timelike direction.

Like the Lorentz group, theSL(2,c) has a number of
interesting subgroups. The subgroup most familiar to us
SU(2) which is locally isomorphic to the three-dimension
rotation group. In addition, this group contains three su
groups that are locally isomorphic to the groupO(2,1) ap-
plicable to the Minkowskian space of two spacelike and o
timelike dimensions.

One of the subgroups ofSL(2,c) is SL(2,r ) consisting of
matrices with real elements. This subgroup is also called
Sp(2) group which we used in this paper in order to ca
out the Iwasawa decomposition. Another interesting s
group is the one we used for computing theS matrix, which
starts with the boundary matrix of Eq.~6! and the phase-shif
matrix of Eq.~8!. This group is calledSU~1,1!. The present
paper exploits the isomorphism betweenSp~2! andSU~1,1!.
While the physical world is describable in terms ofSU(1,1),
we carry out the Iwasawa decomposition in theSp(2) re-
gime.

Indeed, the conjugate transformation from Eq.~19! to Eq.
~21! is from SU(1,1) toSp(2), while the transition from Eq.
~21! to Eq. ~23! is within theSp(2) group. Thus, the transi
tion from Eq.~19! to Eq. ~23! is a conjugate transformatio
from the SU(1,1) subgroup to the subgroupSp(2) of
SL(2,r ).

Next, the mathematical instrument given in Sec. III is t
decomposition of theSp(2) andSU(1,1) matrices. Unlike
2-5
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the traditional approach to group theory which starts fr
the generators of the Lie algebra, we used in this pape
approach similar to what Goldstein did for the thre
dimensional rotation group in terms of the Euler angles@13#.
There are three generators for the rotation group, but G
stein starts with rotations around thez andx directions. Ro-
tations around they axis and the most general form for th
rotation matrix can be constructed from repeated applicat
of those two starting matrices. Let us call this type of a
proach the ‘‘Euler construction.’’

There are three basic advantages of this approach. F
the number of ‘‘starter’’ matrices is less than the number
generators. For example, we need only two starters for
three-parameter rotation group. In our case, we started
two matrices for the three-parameter groupSp(2) and also
for SU(1,1). Second, each starter matrix takes a simple fo
and has its own physical interpretation.

The third advantage can be stated in the following w
Repeated applications of the starter matrices will lead t
very complicated expression. However, the complicated
pression can be decomposed into the minimum numbe
starter matrices. For example, this number is three for
three-dimensional rotation group. This number is also th
for SU(2) andSp(2). Wecall this the Euler decomposition
The present paper is based on both the Euler construc
and the Euler decomposition.

Among the several useful Euler decompositions,
Iwasawa decomposition plays the central role in this pa
In Sec. III we explained what the decomposition does to
two-by-two matrices ofSp(2), but it hasbeen an interesting
subject since Iwasawa’s first publication on this subject@8#.
It is beyond the scope of this paper to present a histor
review of the subject. However, we would like to point o
that there are areas of physics where this important m
, J
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ematical theorem was totally overlooked. For instance,
particle theory, Wigner’s little groups dictate the intern
space-time symmetries of massive and massless particles
are locally isomorphic toO(3) andE(2), respectively@14#.
The little group is the maximal subgroup of the Loren
group whose transformations do not change the fo
momentum of a given particle@15#. TheE(2)-like subgroup
for massless particles is locally isomorphic to the subgro
of SL(2,c), which can be started from one of the matrices
Eq. ~34! and the diagonal matrix of Eq.~10!. Thus there was
an underlying Iwasawa decomposition while the t
E(2)-like subgroup was decomposed into rotation and bo
matrices@16#, but the authors did not know this. One of tho
authors is one of the authors of the present paper.

In optics, there are many two-by-two matrices with o
vanishing off-diagonal element. It was generally known th
this has something to do with the Iwasawa effect, but Sim
and Mukunda@9# and Hanet al. @10# started treating the
Iwasawa decomposition as the main issue in their paper
polarized light.

In para-axial lens optics, the matrices of the form given
Eq. ~34! are the starters@17#, and repeated applications o
those two starters will lead to the most general form
Sp(2) matrices. It had been a challenging problem sin
1985 @17# to write the most general two-by-two matrix i
lens optics in terms of the minimum number of those sta
matrices. This problem has been solved recently@18#, and
the central issue in the problem was the Iwasawa decom
sition.

In laser physics, there are many matrices of the fo
given in Eq.~34! with complex parameters@19,20#. Indeed,
the Iwasawa decomposition appears to have a bright futur
optics.
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